人才培养

当前位置: 首页 - 人才培养 - 教学大纲 - 正文

《管理运筹学(双语)》教学大纲

作者: 发布日期:2018-06-20 浏览次数:

 

《管理运筹学(双语)》教学大纲
(2016年修定)
课程代码:0202110
英文名称:Management Operations Research
课程性质:专业基础课
前置课程:微积分、线性代数、概率统计、统计学、管理学原理
后置课程:生产运作管理、系统工程、物流分析与设施规划、企业战略管理等
学 分:3学分
课 时:51课时
课程负责人:孙树垒
主讲教师:孙树垒、张庆民
考核方式:考试
成绩构成:平时成绩(40%)+考试成绩(60%)
使用教材:Wayne L. Winston编著,Operations ResearchFourth Edition),北京:清华大学出版社,2011
课程概述:
管理运筹学是管理科学、近代应用数学和计算机技术的一个交叉学科,主要是将生产、管理等过程中出现的一些带有普遍性的资源运筹问题加以提炼,然后综合利用数学、统计学和电子计算机技术进行分析、运算,得出各种各样的结果,最后提出综合性的合理安排,探求最有效的工作方法或最优决策,以在最短的时间内,以最少的资源投入取得最大的产出效果。
管理运筹学作为一门用来解决实际管理问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法和计算机分析处理。它的主要内容包括运筹学、系统分析、决策科学化和计算机运行处理几个方面,本课程从定量分析决策角度为科学管理开辟了广泛的研究和应用领域。
教学目的:
1)使学生学会掌握和使用管理运筹的思维方式与科学方法,熟悉若干管理运筹重要模型,知道在实际管理工作中使用运筹学模型和定量分析方法及对于解决管理中的问题和提高经济效益所起的作用。
2)使学员初步掌握将实际管理中的问题形成运筹学模型的方法与技巧。能初步对生产、运营等管理中出现的一些带有普遍性的资源配置问题加以提炼、分析和处理。
3)使学员初步掌握软件应用,学会使用所学软件解决较简单的实际问题。
教学方法:
以课堂教学为主,重点讲授线性规划及其在工商管理中的应用、整数规划、动态规划、运输问题、图论与网络、排序与统筹、决策分析、对策论、排队论、库存论等内容。教学中注重引导学生针对生产、运作过程中出现的大量资源管理问题,学会和掌握管理运筹的思维方式和科学处理的程序与方法,初步掌握对生产、运营等管理过程中出现的大量带有普遍性的资源配置问题能加以提炼、归纳和分析处理,同时,通过计算机上机操作训练,了解和掌握管理运筹软件的内容、程序、方法,使学生初步掌握解决实际问题、提出科学决策建议的能力。


各章教学要求及教学要点
Chapter 1. INTRODUCTION TO MODEL BUILDING.
课时分配
1学时
教学内容
1.1 An Introduction to Modeling.
1.2 The Seven-Step Model-Building Process.
1.3 Examples.
Chapter 2. BASIC LINEAR ALGEBRA.
课时分配
2学时
教学内容
2.1 Matrices and Vectors.
2.2 Matrices and Systems of Linear Equations.
2.3 The Gauss-Jordan Method for Solving Systems of Linear Equations.
2.4 Linear Independence and Linear Dependence.
2.5 The Inverse of a Matrix.
2.6 Determinants.
Chapter 3. INTRODUCTION TO LINEAR PROGRAMMING.
课时分配
3学时
教学内容
3.1 What is a Linear Programming Problem?
3.2 The Graphical Solution of Two-Variable Linear Programming Problems.
3.3 Special Cases.
3.4 A Diet Problem.
3.5 A Work-Scheduling Problem.
3.6 A Capital Budgeting Problem.
3.7 Short-term Financial Planning.
3.8 Blending Problems.
3.9 Production Process Models.
3.10 Using Linear Programming to Solve Multi-period Decision Problems.
3.11 Multi-period Financial Models. Multi-period Work Scheduling.
Chapter 4. THE SIMPLEX ALGORITHM AND GOAL PROGRAMMING.
课时分配
6学时
教学内容
4.1 How to Convert an LP to Standard Form.
4.2 Preview of the Simplex Algorithm.
4.3 The Simplex Algorithm.
4.4 Using the Simplex Algorithm to Solve Minimization Problems.
4.5 Alternative Optimal Solutions.
4.6 Unbounded LPs.
4.7 The LINDO Computer Package.
4.8 Matrix Generators, LINGO, and Scaling of LPs.
4.9 Degeneracy and the Convergence of the Simplex Algorithm.
4.10 The Big M Method.
4.11 The Two-Phase Simplex Method.
4.12 Unrestricted-in-Sign Variables.
Chapter 5. SENSITIVITY ANALYSIS: AN APPLIED APPROACH.
课时分配
3学时
教学内容
5.1 A Graphical Introduction to Sensitivity Analysis.
5.2 The Computer and Sensitivity Analysis.
5.3 Managerial Use of Shadow Prices.
5.4 What Happens to the Optimal z-value if the Current Basis is No Longer Optimal?
Chapter 6. SENSITIVITY ANALYSIS AND DUALITY.
课时分配
3学时
教学内容
6.1 A Graphical Introduction to Sensitivity Analysis.
6.2 Some Important Formulas. Sensitivity Analysis.
6.3 Sensitivity Analysis When More Than One Parameter is Changed.
6.4 Finding the Dual of an LP.
6.5 Economic Interpretation of the Dual Problem.
6.6 The Dual Theorem and Its Consequences. Shadow Prices.
6.7 Duality and Sensitivity Analysis.
Chapter 7. TRANSPORTATION, ASSIGNMENT, AND TRANSSHIPMENT PROBLEMS.
课时分配
6学时
教学内容
7.1 Formulating Transportation Problems.
7.2 Finding Basic Feasible Solutions for Transportation Problems.
7.3 The Transportation Simplex Method.
7.4 Sensitivity Analysis for Transportation Problems.
7.5 Assignment Problems.
7.6 Transshipment Problems.
Chapter 8. NETWORK MODELS.
课时分配
6学时
教学内容
8.1 Basic Definitions. Shortest Path Problems.
8.2 Maximum Flow Problems.
8.3 CPM and PERT.
8.4 Minimum Cost Network Flow Problems.
8.5 Minimum Spanning Tree Problems.
8.6 The Network Simplex Method.
Chapter 9. INTEGER PROGRAMMING.
课时分配
6学时
教学内容
9.1 Introduction to Integer Programming.
9.2 Formulation Integer Programming Problems.
9.3 The Branch-and-Bound Method for Solving Pure Integer Programming Problems.
9.4 The Branch-and-Bound Method for Solving MIPB.
9.5 Solving Knapsack Problems by the Branch-and-Bound Method.
9.6 Solving Combinatorial Optimization Problems by the Branch-and-Bound Method.
9.7 Implicit Enumeration.
9.8 The Cutting Plane Algorithm.
Chapter 14. GAME THEORY.
课时分配
6学时
教学内容
14.1 Two-Person Zero-Sum and Constant-Sum Games: Saddle Points.
14.2Two-Person Zero-Sum Games: Randomized Strategies, Domination, and Graphical Solution.
14.3 Linear Programming and Zero-Sum Games.
14.4 Two-Person Non-constant-Sum Games.
14.5 Introduction to n-Person Game Theory.
14.6 The Core of an n-Person Game.
14.7 The Shapley Value.
Chapter 15. DETERMINISTIC EOQ INVENTORY MODELS.
课时分配
3学时
教学内容
15.1 Introduction to Basic Inventory Models.
15.2 The Basic Economic Order Quantity Model.
15.3 Computing the Optimal Order Quantity When Quantity Discounts Are Allowed.
15.4 The Continuous Rate EOQ Model.
15.5 The EOQ Model with Back Orders Allowed.
15.6 Multiple Product Economic Order Quantity Models.
15.7 Review Problems.
Chapter 16. PROBABILISTIC INVENTORY MODELS.
课时分配
3学时
教学内容
16.1 Single Period Decision Models.
16.2 The Concept of Marginal Analysis.
16.3 The News Vendor Problem: Discrete Demand.
16.4 The News Vendor Problem: Continuous Demand.
16.5 Other One-Period Models.
16.6 The EOQ with Uncertain Demand: the (r, q) and (s,S models).
Chapter 18. DETERMINISTIC DYNAMIC PROGRAMMING.
课时分配
3学时
教学内容
18.1 Two Puzzles.
18.2 A Network Problem.
18.3 An Inventory Problem.
18.4 Resource Allocation Problems.
18.5 Equipment Replacement Problems.
18.6 Formulating Dynamic Programming Recursions.
18.7 The Wagner-Whitin Algorithm and the Silver-Meal Heuristic.
18.8 Forward Recursions.
18.9 Using Spreadsheets to Solve Dynamic Programming Problems.
18.10 Review Problems.
Chapter 19. PROBABILISTIC DYNAMIC PROGRAMMING.
课时分配
3学时
教学内容
19.1 When Current Stage Costs are Uncertain but the Next Period's State is Certain.
19.2 A Probabilistic Inventory Model.
19.3 How to Maximize the Probability of a Favorable Event Occurring.
19.4 Further Examples of Probabilistic Dynamic Programming Formulations.
19.5 Markov Decision Processes.
19.6 Review Problems.
附录:参考书目
1.李德、钱颂迪编:《运筹学》(修订版),北京:清华大学出版社,1990年
2.胡运权主编:《运筹学教程》,北京:清华大学出版社,1998年
3.[加]钟彼德著:《管理科学(运筹学)》, 北京:机械工业出版社,2000年10月版
4.吴育华主编:《管理科学基础》(第二版),天津:天津大学出版社,2004年9月版
5.宁宣熙编著:《运筹学实用教程》,北京:科学出版社,2002年8月版
6.韩大卫编著:《管理运筹学》,大连:大连理工大学出版社,1998年版
7.张莹主编:《运筹学基础》,北京:清华大学出版社,1995年
8.蓝伯雄主编:《管理数学(下)——运筹学》,北京:清华大学出版社,1997年
9.胡运权主编:《运筹学习题集》(修订版),北京:清华大学出版社,1995年
10.郭耀煌主编:《运筹学原理与方法》,成都:西南交通大学出版社,1995年
11.弗雷德里克·S.希利尔 (Frederick S.Hillier), 杰拉尔德·J.利伯曼 (Gerald J.Lieberman):《运筹学导论(第10版)》(英文版),北京:清华大学出版社,2015年
12.哈姆迪·A·塔哈 (Hamdy A.Taha):《运筹学导论(第9版)》,北京:中国人民大学出版社,2014
 
 
 
 
 
 
 
执笔人:孙树垒                                   
审定人:张庆民、孟秀丽                             
院负责人:刘军